Mutant PKCγ in spinocerebellar ataxia type 14 disrupts synapse elimination and long-term depression in Purkinje cells in vivo.

نویسندگان

  • Anton N Shuvaev
  • Hajime Horiuchi
  • Takahiro Seki
  • Hanna Goenawan
  • Tomohiko Irie
  • Akira Iizuka
  • Norio Sakai
  • Hirokazu Hirai
چکیده

Cerebellar Purkinje cells (PCs) express a large amount of the γ isoform of protein kinase C (PKCγ) and a modest level of PKCα. The PKCγ is involved in the pruning of climbing fiber (CF) synapses from developing PCs, and PKCα plays a critical role in long-term depression (LTD) at parallel fiber (PF)-PC synapses. Moreover, the PKC signaling in PCs negatively modulates the nonselective transient receptor potential cation channel type 3 (TRPC3), the opening of which elicits slow EPSCs at PF-PC synapses. Autosomal dominant spinocerebellar ataxia type 14 (SCA14) is caused by mutations in PKCγ. To clarify the pathology of this disorder, mutant (S119P) PKCγ tagged with GFP was lentivirally expressed in developing and mature mouse PCs in vivo, and the effects were assessed 3 weeks after the injection. Mutant PKCγ-GFP aggregated in PCs without signs of degeneration. Electrophysiology results showed impaired pruning of CF synapses from developing PCs, failure of LTD expression, and increases in slow EPSC amplitude. We also found that mutant PKCγ colocalized with wild-type PKCγ, which suggests that mutant PKCγ acts in a dominant-negative manner on wild-type PKCγ. In contrast, PKCα did not colocalize with mutant PKCγ. The membrane residence time of PKCα after depolarization-induced translocation, however, was significantly decreased when it was present with the mutant PKCγ construct. These results suggest that mutant PKCγ in PCs of SCA14 patients could differentially impair the membrane translocation kinetics of wild-type γ and α PKCs, which would disrupt synapse pruning, synaptic plasticity, and synaptic transmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loss of Purkinje Cells in the PKCγ H101Y Transgenic Mouse

Spinocerebellar ataxia type 14 (SCA14) is an autosomal, dominant neurodegenerative disorder caused by mutations in PKCγ. The objective of this study was to determine effects of PKCγ H101Y SCA14 mutation on Purkinje cells in the transgenic mouse. Results demonstrated that wild type PKCγ-like Purkinje cell localization of HA-tagged PKCγ H101Y mutant proteins, altered morphology and loss of Purkin...

متن کامل

Identification and characterization of PKCγ, a kinase associated with SCA14, as an amyloidogenic protein.

Amyloid assemblies are associated with a wide range of human disorders, including Alzheimer's and Parkinson's diseases. Here, we identify protein kinase C (PKC) γ, a serine/threonine kinase mutated in the neurodegenerative disease spinocerebellar ataxia type 14 (SCA14), as a novel amyloidogenic protein with no previously characterized amyloid-prone domains. We found that overexpression of PKCγ ...

متن کامل

Motor and Cerebellar Architectural Abnormalities during the Early Progression of Ataxia in a Mouse Model of SCA1 and How Early Prevention Leads to a Better Outcome Later in Life

Exposing developing cerebellar Purkinje neurons (PNs) to mutant Ataxin1 (ATXN1) in 82Q spinocerebellar ataxia type 1 (SCA1) mice disrupts motor behavior and cerebellar climbing fiber (CF) architecture from as early as 4 weeks of age. In contrast, if mutant ATXN1 expression is silenced until after cerebellar development is complete, then its impact on motor behavior and cerebellar architecture i...

متن کامل

Modulation, Plasticity and Pathophysiology of the Parallel Fiber-Purkinje Cell Synapse

The parallel fiber-Purkinje cell (PF-PC) synapse represents the point of maximal signal divergence in the cerebellar cortex with an estimated number of about 60 billion synaptic contacts in the rat and 100,000 billions in humans. At the same time, the Purkinje cell dendritic tree is a site of remarkable convergence of more than 100,000 parallel fiber synapses. Parallel fiber activity generates ...

متن کامل

Aminopyridines correct early dysfunction and delay neurodegeneration in a mouse model of spinocerebellar ataxia type 1.

The contribution of neuronal dysfunction to neurodegeneration is studied in a mouse model of spinocerebellar ataxia type 1 (SCA1) displaying impaired motor performance ahead of loss or atrophy of cerebellar Purkinje cells. Presymptomatic SCA1 mice show a reduction in the firing rate of Purkinje cells (both in vivo and in slices) associated with a reduction in the efficiency of the main glutamat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 40  شماره 

صفحات  -

تاریخ انتشار 2011